import argparse import numpy as np import os import time import torch from attacker import Attacker if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--cuda', action='store_false', help='it is unnecessary') parser.add_argument('--gpu', type=str, default='0', help='the index of test sample ') parser.add_argument('--target_class', type=int, default=-1, help='-1:untargeted') parser.add_argument('--popsize', type=int, default=1, help='the popsuze of DE') parser.add_argument('--magnitude_factor', type=float, default=0.04, help='the value of beta') parser.add_argument('--maxitr', type=int, default=50, help='max iterations of DE') parser.add_argument('--run_tag', default='ItalyPowerDemand', help='the name of dataset e.g.ECG200') parser.add_argument('--model', default='f', help='the model type(ResNet,FCN),f:FCN r:Resnet') parser.add_argument('--topk', type=int, default=4, help='employ the top k shapelets, maxima value is 5') parser.add_argument('--normalize', action='store_true', help='it is unnecessary in our project, we have ' 'normalized the data') parser.add_argument('--e', type=int, default=1499, help='epochs of model') opt = parser.parse_args() device = "cpu" # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(device) # device = 'cuda' if torch.cuda.is_available() else 'cpu' os.makedirs('result_%s_%s/%s/figures%s' % (str(opt.magnitude_factor), opt.model, opt.run_tag, opt.gpu), exist_ok=True) data_path = 'data/' + opt.run_tag + '/' + opt.run_tag + '_attack' + opt.gpu + '.txt' test_data = np.loadtxt(data_path) size = test_data.shape[0] idx_array = np.arange(size) attacker = Attacker(run_tag=opt.run_tag, e=opt.e, model_type=opt.model, cuda=opt.cuda, normalize=opt.normalize, device=device, gpu=opt.gpu) # record of the running time start_time = time.time() # count the number of the successful instances, mse,iterations,queries success_cnt = 0 right_cnt = 0 total_mse = 0 total_iterations = 0 total_quries = 0 for idx in idx_array: print('###Start %s : generating adversarial example of the %d sample ###' % (opt.run_tag, idx)) ori_ts, attack_ts, info = attacker.attack(sample_idx=idx, target_class=opt.target_class, factor=opt.magnitude_factor, max_iteration=opt.maxitr, popsize=opt.popsize, device=device) # only save the successful adversarial example if info[-1] == 'Success': success_cnt = success_cnt + 1 total_iterations += info[-2] total_mse += info[-3] total_quries += info[-4] file0 = open('result_' + str(opt.magnitude_factor) + '_' + opt.model + '/' + opt.run_tag + '/ori_time_series' + str(opt.gpu) + '.txt', 'a+') file0.write('%d %d ' % (idx, info[3])) for i in ori_ts: file0.write('%.4f ' % i) file0.write('\n') file0.close() file = open('result_' + str(opt.magnitude_factor) + '_' + opt.model + '/' + opt.run_tag + '/attack_time_series' + str(opt.gpu) + '.txt', 'a+') file.write('%d %d ' % (idx, info[3])) for i in attack_ts: file.write('%.4f ' % i) file.write('\n') file.close() if info[-1] != 'WrongSample': right_cnt += 1 # Save the returned information, whether the attack was successful or not file = open('result_' + str(opt.magnitude_factor) + '_' + opt.model + '/' + opt.run_tag + '/information' + opt.gpu + '.txt', 'a+') file.write('%d ' % idx) for i in info: if isinstance(i, int): file.write('%d ' % i) elif isinstance(i, float): file.write('%.4f ' % i) else: file.write(str(i) + ' ') file.write('\n') file.close() endtime = time.time() total = endtime - start_time # print useful information print('Running time: %.4f ' % total) print('Correctly-classified samples: %d' % right_cnt) print('Successful samples: %d' % success_cnt) print('Success rate:%.2f%%' % (success_cnt / right_cnt * 100)) print('Misclassification rate:%.2f%%' % (success_cnt / size * 100)) print('ANI: %.2f' % (total_iterations / success_cnt)) print('MSE: %.4f' % (total_mse / success_cnt)) print('Mean queries:%.2f\n' % (total_quries / success_cnt)) # save the useful information file = open('result_' + str(opt.magnitude_factor) + '_' + opt.model + '/' + opt.run_tag + '/information' + opt.gpu + '.txt', 'a+') file.write('Running time:%.4f\n' % total) file.write('Correctly-classified samples: %d' % right_cnt) file.write('Successful samples:%d\n' % success_cnt) file.write('Success rate:%.2f%%' % (success_cnt / right_cnt * 100)) file.write('Misclassification rate:%.2f%%\n' % (success_cnt / size * 100)) file.write('ANI:%.2f\n' % (total_iterations / success_cnt)) file.write('MSE:%.4f\n' % (total_mse / success_cnt)) file.write('Mean queries:%.2f\n' % (total_quries / success_cnt)) file.close()