CCPP/main.py
2025-04-20 20:55:06 +08:00

120 lines
5.4 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import argparse
import numpy as np
import os
import time
import torch
from attacker import Attacker
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--cuda', action='store_false', help='it is unnecessary')
parser.add_argument('--gpu', type=str, default='0', help='the index of test sample ')
parser.add_argument('--target_class', type=int, default=-1, help='-1:untargeted')
parser.add_argument('--popsize', type=int, default=1, help='the popsuze of DE')
parser.add_argument('--magnitude_factor', type=float, default=0.04, help='the value of beta')
parser.add_argument('--maxitr', type=int, default=50, help='max iterations of DE')
parser.add_argument('--run_tag', default='ItalyPowerDemand', help='the name of dataset e.g.ECG200')
parser.add_argument('--model', default='f', help='the model type(ResNet,FCN),f:FCN r:Resnet')
parser.add_argument('--topk', type=int, default=4, help='employ the top k shapelets, maxima value is 5')
parser.add_argument('--normalize', action='store_true', help='it is unnecessary in our project, we have '
'normalized the data')
parser.add_argument('--e', type=int, default=1499, help='epochs of model')
opt = parser.parse_args()
device = "cpu"
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
os.makedirs('result_%s_%s/%s/figures%s' % (str(opt.magnitude_factor),
opt.model, opt.run_tag, opt.gpu), exist_ok=True)
data_path = 'data/' + opt.run_tag + '/' + opt.run_tag + '_attack' + opt.gpu + '.txt'
test_data = np.loadtxt(data_path)
size = test_data.shape[0]
idx_array = np.arange(size)
attacker = Attacker(run_tag=opt.run_tag, e=opt.e,
model_type=opt.model, cuda=opt.cuda, normalize=opt.normalize, device=device, gpu=opt.gpu)
# record of the running time
start_time = time.time()
# count the number of the successful instances, mse,iterations,queries
success_cnt = 0
right_cnt = 0
total_mse = 0
total_iterations = 0
total_quries = 0
for idx in idx_array:
print('###Start %s : generating adversarial example of the %d sample ###' % (opt.run_tag, idx))
ori_ts, attack_ts, info = attacker.attack(sample_idx=idx, target_class=opt.target_class,
factor=opt.magnitude_factor, max_iteration=opt.maxitr,
popsize=opt.popsize, device=device)
# only save the successful adversarial example
if info[-1] == 'Success':
success_cnt = success_cnt + 1
total_iterations += info[-2]
total_mse += info[-3]
total_quries += info[-4]
file0 = open('result_' + str(opt.magnitude_factor) + '_' + opt.model
+ '/' + opt.run_tag + '/ori_time_series' + str(opt.gpu) + '.txt', 'a+')
file0.write('%d %d ' % (idx, info[3]))
for i in ori_ts:
file0.write('%.4f ' % i)
file0.write('\n')
file0.close()
file = open('result_' + str(opt.magnitude_factor) + '_' + opt.model
+ '/' + opt.run_tag + '/attack_time_series' + str(opt.gpu) + '.txt', 'a+')
file.write('%d %d ' % (idx, info[3]))
for i in attack_ts:
file.write('%.4f ' % i)
file.write('\n')
file.close()
if info[-1] != 'WrongSample':
right_cnt += 1
# Save the returned information, whether the attack was successful or not
file = open('result_' + str(opt.magnitude_factor) + '_' + opt.model
+ '/' + opt.run_tag + '/information' + opt.gpu + '.txt', 'a+')
file.write('%d ' % idx)
for i in info:
if isinstance(i, int):
file.write('%d ' % i)
elif isinstance(i, float):
file.write('%.4f ' % i)
else:
file.write(str(i) + ' ')
file.write('\n')
file.close()
endtime = time.time()
total = endtime - start_time
# print useful information
print('Running time: %.4f ' % total)
print('Correctly-classified samples: %d' % right_cnt)
print('Successful samples: %d' % success_cnt)
print('Success rate%.2f%%' % (success_cnt / right_cnt * 100))
print('Misclassification rate%.2f%%' % (success_cnt / size * 100))
print('ANI: %.2f' % (total_iterations / success_cnt))
print('MSE: %.4f' % (total_mse / success_cnt))
print('Mean queries%.2f\n' % (total_quries / success_cnt))
# save the useful information
file = open('result_' + str(opt.magnitude_factor) + '_' + opt.model
+ '/' + opt.run_tag + '/information' + opt.gpu + '.txt', 'a+')
file.write('Running time:%.4f\n' % total)
file.write('Correctly-classified samples: %d' % right_cnt)
file.write('Successful samples:%d\n' % success_cnt)
file.write('Success rate%.2f%%' % (success_cnt / right_cnt * 100))
file.write('Misclassification rate%.2f%%\n' % (success_cnt / size * 100))
file.write('ANI:%.2f\n' % (total_iterations / success_cnt))
file.write('MSE:%.4f\n' % (total_mse / success_cnt))
file.write('Mean queries%.2f\n' % (total_quries / success_cnt))
file.close()