313 lines
13 KiB
Python
313 lines
13 KiB
Python
|
import os
|
|||
|
import time
|
|||
|
|
|||
|
import matplotlib.pyplot as plt
|
|||
|
import numpy as np
|
|||
|
import pandas as pd
|
|||
|
from tqdm import tqdm
|
|||
|
|
|||
|
from utils import load_config, get_trade_cal
|
|||
|
from utils import save_df_to_db, load_df_from_db, get_existing_trade_dates
|
|||
|
|
|||
|
# 加载配置并初始化tushare
|
|||
|
config = load_config()
|
|||
|
import tushare as ts
|
|||
|
import seaborn as sns
|
|||
|
|
|||
|
ts.set_token(config['tushare_token'])
|
|||
|
pro = ts.pro_api()
|
|||
|
|
|||
|
|
|||
|
def get_sector_moneyflow_data(start_date=None, end_date=None):
|
|||
|
"""
|
|||
|
获取指定时间段内的板块资金流向数据,使用数据库缓存
|
|||
|
|
|||
|
参数:
|
|||
|
start_date (str): 开始日期,格式'YYYYMMDD'
|
|||
|
end_date (str): 结束日期,格式'YYYYMMDD'
|
|||
|
|
|||
|
返回:
|
|||
|
pandas.DataFrame: 所有板块资金流向数据
|
|||
|
"""
|
|||
|
# 获取目标交易日历
|
|||
|
all_trade_dates = get_trade_cal(start_date, end_date)
|
|||
|
|
|||
|
# 从数据库获取已有的交易日期
|
|||
|
existing_dates = get_existing_trade_dates('sector_fund_flow')
|
|||
|
|
|||
|
# 筛选出需要新获取的日期
|
|||
|
new_dates = [date for date in all_trade_dates if date not in existing_dates]
|
|||
|
|
|||
|
if not new_dates:
|
|||
|
print("所有数据已在数据库中,无需更新")
|
|||
|
return load_df_from_db('sector_fund_flow')
|
|||
|
|
|||
|
print(f"需要获取 {len(new_dates)} 个新交易日的数据")
|
|||
|
|
|||
|
# 获取新日期的数据
|
|||
|
all_new_data = []
|
|||
|
|
|||
|
# 使用tqdm显示进度
|
|||
|
for trade_date in tqdm(new_dates):
|
|||
|
try:
|
|||
|
# 从tushare获取当日板块资金流向数据
|
|||
|
df = pro.moneyflow_ind_dc(trade_date=trade_date)
|
|||
|
|
|||
|
# 如果有数据,添加到列表
|
|||
|
if not df.empty:
|
|||
|
# 计算主力资金 = 超大单买入 + 大单买入
|
|||
|
df['main_force_amount'] = df['buy_elg_amount'] + df['buy_lg_amount']
|
|||
|
all_new_data.append(df)
|
|||
|
else:
|
|||
|
print(f"日期 {trade_date} 无数据")
|
|||
|
|
|||
|
except Exception as e:
|
|||
|
print(f"获取 {trade_date} 的数据时出错: {e}")
|
|||
|
|
|||
|
# 如果有新数据,合并并保存到数据库
|
|||
|
if all_new_data:
|
|||
|
# 将所有新数据合并为一个DataFrame
|
|||
|
new_df = pd.concat(all_new_data, ignore_index=True)
|
|||
|
|
|||
|
# 保存到数据库
|
|||
|
save_df_to_db(new_df, table_name='sector_fund_flow', if_exists='append')
|
|||
|
|
|||
|
print(f"已将 {len(new_df)} 条新记录保存到数据库")
|
|||
|
else:
|
|||
|
print("未获取到任何新数据")
|
|||
|
|
|||
|
return load_df_from_db('sector_fund_flow')
|
|||
|
|
|||
|
|
|||
|
def analyze_money_flow():
|
|||
|
"""
|
|||
|
分析各类资金流向指标对行业在随后1-10天表现的影响
|
|||
|
包括期望收益分析和特定交易策略验证
|
|||
|
"""
|
|||
|
# 读取资金流数据
|
|||
|
try:
|
|||
|
df = load_df_from_db('sector_fund_flow')
|
|||
|
print(f"成功从数据库加载资金流数据,共计{len(df)}条记录")
|
|||
|
except Exception as e:
|
|||
|
print(f"从数据库读取数据失败:{e}")
|
|||
|
return
|
|||
|
|
|||
|
# 将日期格式转换为datetime - 如果存储在数据库中的是字符串格式
|
|||
|
df['trade_date'] = pd.to_datetime(df['trade_date'], format='%Y%m%d', errors='coerce')
|
|||
|
df = df[~df['trade_date'].isna()]
|
|||
|
# 按日期排序
|
|||
|
df = df.sort_values('trade_date')
|
|||
|
# 获取所有交易日期
|
|||
|
all_dates = df['trade_date'].unique()
|
|||
|
|
|||
|
# 定义要分析的资金流指标
|
|||
|
# 格式: (指标名, 排序方向, 关联性)
|
|||
|
# 关联性: 正相关=1, 负相关=-1 (用于确定是取最高还是最低)
|
|||
|
flow_indicators = [
|
|||
|
('main_force_amount', 1, '主力净额')
|
|||
|
]
|
|||
|
|
|||
|
# 确保结果目录存在
|
|||
|
os.makedirs('result', exist_ok=True)
|
|||
|
|
|||
|
# 为每个指标进行分析
|
|||
|
for indicator, correlation, indicator_name in flow_indicators:
|
|||
|
print(f"\n\n分析 {indicator_name} 与未来指数关系...")
|
|||
|
|
|||
|
# 创建结果数据结构
|
|||
|
results = []
|
|||
|
|
|||
|
# 遍历每个交易日期(除了最后10天)
|
|||
|
for i in range(len(all_dates) - 10):
|
|||
|
current_date = all_dates[i]
|
|||
|
# 获取当前日期的数据
|
|||
|
current_day_data = df[df['trade_date'] == current_date]
|
|||
|
|
|||
|
# 确定排序方向和选择逻辑
|
|||
|
sort_ascending = correlation < 0 # 负相关时升序(最小值), 正相关时降序(最大值)
|
|||
|
|
|||
|
# 找出该指标排名靠前的行业
|
|||
|
if correlation > 0:
|
|||
|
# 正相关,找最高值
|
|||
|
top_sectors = current_day_data.sort_values(indicator, ascending=False).head(1)['name'].tolist()
|
|||
|
else:
|
|||
|
# 负相关,找最低值
|
|||
|
top_sectors = current_day_data.sort_values(indicator, ascending=True).head(1)['name'].tolist()
|
|||
|
|
|||
|
# 分析每个行业在随后1-10天的表现
|
|||
|
for sector in top_sectors:
|
|||
|
# 获取该行业当天的指数变化和指标值
|
|||
|
sector_current = current_day_data[current_day_data['name'] == sector]
|
|||
|
if sector_current.empty:
|
|||
|
continue
|
|||
|
current_pct_change = sector_current['pct_change'].values[0]
|
|||
|
current_indicator_value = sector_current[indicator].values[0]
|
|||
|
|
|||
|
# 分析随后1-10天的表现
|
|||
|
future_changes = []
|
|||
|
for day_offset in range(1, 11):
|
|||
|
if i + day_offset < len(all_dates):
|
|||
|
future_date = all_dates[i + day_offset]
|
|||
|
future_data = df[(df['trade_date'] == future_date) & (df['name'] == sector)]
|
|||
|
if not future_data.empty:
|
|||
|
future_changes.append(future_data['pct_change'].values[0])
|
|||
|
else:
|
|||
|
future_changes.append(None)
|
|||
|
else:
|
|||
|
future_changes.append(None)
|
|||
|
|
|||
|
# 如果至少有一个未来日期有数据
|
|||
|
if any(x is not None for x in future_changes):
|
|||
|
result_entry = {
|
|||
|
'date': current_date.strftime('%Y%m%d'), # 将日期格式化为YYYYMMDD字符串
|
|||
|
'sector': sector,
|
|||
|
f'{indicator}': current_indicator_value,
|
|||
|
'current_pct_change': current_pct_change,
|
|||
|
}
|
|||
|
# 添加1-10天的变化
|
|||
|
for day in range(1, 11):
|
|||
|
result_entry[f'day{day}_change'] = future_changes[day - 1]
|
|||
|
# 计算平均变化
|
|||
|
result_entry['avg_10day_change'] = np.nanmean([x for x in future_changes if x is not None])
|
|||
|
results.append(result_entry)
|
|||
|
|
|||
|
# 转换为DataFrame
|
|||
|
results_df = pd.DataFrame(results)
|
|||
|
if results_df.empty:
|
|||
|
print(f"没有足够的数据来分析{indicator_name}与后续表现的关系")
|
|||
|
continue
|
|||
|
|
|||
|
# 保存结果
|
|||
|
output_file = f'result/{indicator}_performance.xlsx'
|
|||
|
results_df.to_excel(output_file, index=False)
|
|||
|
print(f"{indicator_name}表现分析已保存至{output_file}")
|
|||
|
|
|||
|
# 分析整体表现
|
|||
|
avg_performance = {}
|
|||
|
for day in range(1, 11):
|
|||
|
avg_performance[f'day{day}'] = results_df[f'day{day}_change'].mean()
|
|||
|
avg_performance['avg_10day'] = results_df['avg_10day_change'].mean()
|
|||
|
|
|||
|
print(f"\n{indicator_name}极值行业的平均表现:")
|
|||
|
for day, perf in avg_performance.items():
|
|||
|
print(f"{day}: {perf:.4f}%")
|
|||
|
|
|||
|
# 分析期望值(正指数变化的百分比)
|
|||
|
success_rates = {}
|
|||
|
for day in range(1, 11):
|
|||
|
success_rates[f'day{day}'] = (results_df[f'day{day}_change'] > 0).mean() * 100
|
|||
|
|
|||
|
print(f"\n{indicator_name}极值后上涨的概率:")
|
|||
|
for day, rate in success_rates.items():
|
|||
|
print(f"{day}: {rate:.2f}%")
|
|||
|
|
|||
|
# ------------------ 验证特定交易策略 ------------------
|
|||
|
print("\n交易策略验证:")
|
|||
|
|
|||
|
# T+1买入,T+2卖出
|
|||
|
day1_to_day2_change = results_df['day2_change'] - results_df['day1_change']
|
|||
|
avg_change_1_to_2 = day1_to_day2_change.mean()
|
|||
|
win_rate_1_to_2 = (day1_to_day2_change > 0).mean() * 100
|
|||
|
print(f"策略A - T+1(第1日)买入,T+2(第2日)卖出的平均收益: {avg_change_1_to_2:.4f}%")
|
|||
|
print(f"策略A - T+1(第1日)买入,T+2(第2日)卖出的盈利概率: {win_rate_1_to_2:.2f}%")
|
|||
|
|
|||
|
# T+4买入,T+8卖出
|
|||
|
day4_to_day8_change = results_df['day8_change'] + results_df['day7_change'] + results_df['day6_change'] + \
|
|||
|
results_df['day5_change'] - results_df['day4_change']
|
|||
|
avg_change_3_to_8 = day4_to_day8_change.mean()
|
|||
|
win_rate_3_to_8 = (day4_to_day8_change > 0).mean() * 100
|
|||
|
print(f"策略B - T+4(第4日)买入,T+8(第8日)卖出的平均收益: {avg_change_3_to_8:.4f}%")
|
|||
|
print(f"策略B - T+4(第4日)买入,T+8(第8日)卖出的盈利概率: {win_rate_3_to_8:.2f}%")
|
|||
|
|
|||
|
# 分析策略组合效果
|
|||
|
# 模拟完整策略:T+1买入,T+2卖出,T+3买入,T+8卖出
|
|||
|
combined_change = day1_to_day2_change + day4_to_day8_change
|
|||
|
avg_combined_change = combined_change.mean()
|
|||
|
win_rate_combined = (combined_change > 0).mean() * 100
|
|||
|
print(f"组合策略 - 完整策略组合的平均总收益: {avg_combined_change:.4f}%")
|
|||
|
print(f"组合策略 - 完整策略至少盈利的概率: {win_rate_combined:.2f}%")
|
|||
|
|
|||
|
# 绘制策略示意图
|
|||
|
plt.figure(figsize=(14, 8))
|
|||
|
try:
|
|||
|
plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'WenQuanYi Micro Hei']
|
|||
|
title = f'{indicator_name}极值后交易策略示意图'
|
|||
|
xlabel = '交易日'
|
|||
|
ylabel = '指数变化率 (%)'
|
|||
|
strategy_names = ['策略A: T+1买入,T+2卖出', '策略B: T+4买入,T+8卖出']
|
|||
|
except:
|
|||
|
title = f'Trading Strategy after {indicator_name} Extreme Value'
|
|||
|
xlabel = 'Trading Day'
|
|||
|
ylabel = 'Index Change Rate (%)'
|
|||
|
strategy_names = ['Strategy A: Buy T+1, Sell T+2', 'Strategy B: Buy T+3, Sell T+8']
|
|||
|
|
|||
|
days = range(11) # 0-10天
|
|||
|
values = [results_df['current_pct_change'].mean()] + [avg_performance[f'day{i}'] for i in range(1, 11)]
|
|||
|
plt.plot(days, values, marker='o', color='blue', linewidth=2, label='平均表现')
|
|||
|
|
|||
|
# 标记策略A: T+1买入,T+2卖出
|
|||
|
plt.plot([1, 2], [values[1], values[2]], color='green', linewidth=4, alpha=0.7, label=strategy_names[0])
|
|||
|
plt.scatter([1, 2], [values[1], values[2]], color='green', s=100)
|
|||
|
|
|||
|
# 标记策略B: T+4买入,T+8卖出
|
|||
|
plt.plot([3, 8], [values[3], values[8]], color='red', linewidth=4, alpha=0.7, label=strategy_names[1])
|
|||
|
plt.scatter([3, 8], [values[3], values[8]], color='red', s=100)
|
|||
|
|
|||
|
plt.axhline(y=0, color='gray', linestyle='--')
|
|||
|
plt.title(title, fontsize=14)
|
|||
|
plt.ylabel(ylabel)
|
|||
|
plt.xlabel(xlabel)
|
|||
|
plt.xticks(days, ['T'] + [f'T+{i}' for i in range(1, 11)])
|
|||
|
plt.grid(True)
|
|||
|
plt.legend()
|
|||
|
|
|||
|
# 保存策略图表
|
|||
|
strategy_image = f'result/{indicator}_strategy.png'
|
|||
|
plt.savefig(strategy_image, dpi=300, bbox_inches='tight')
|
|||
|
print(f"交易策略示意图已保存至{strategy_image}")
|
|||
|
|
|||
|
# 绘制折线图显示未来10天的平均表现
|
|||
|
plt.figure(figsize=(14, 8))
|
|||
|
# 设置中文字体
|
|||
|
try:
|
|||
|
plt.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'WenQuanYi Micro Hei']
|
|||
|
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题
|
|||
|
days = ['当天'] + [f'第{i}天' for i in range(1, 11)]
|
|||
|
direction = "最高" if correlation > 0 else "最低"
|
|||
|
title = f'{indicator_name}{direction}后的平均表现 (10天)'
|
|||
|
xlabel = '时间'
|
|||
|
ylabel = '指数变化率 (%)'
|
|||
|
except:
|
|||
|
# 如果没有中文字体,使用英文
|
|||
|
days = ['Current'] + [f'Day+{i}' for i in range(1, 11)]
|
|||
|
direction = "Highest" if correlation > 0 else "Lowest"
|
|||
|
title = f'Average Performance After {indicator_name} {direction} (10 Days)'
|
|||
|
xlabel = 'Time'
|
|||
|
ylabel = 'Index Change Rate (%)'
|
|||
|
|
|||
|
values = [results_df['current_pct_change'].mean()] + [avg_performance[f'day{i}'] for i in range(1, 11)]
|
|||
|
plt.plot(days, values, marker='o', linewidth=2)
|
|||
|
plt.axhline(y=0, color='r', linestyle='--')
|
|||
|
plt.title(title, fontsize=14)
|
|||
|
plt.ylabel(ylabel)
|
|||
|
plt.xlabel(xlabel)
|
|||
|
plt.grid(True)
|
|||
|
plt.xticks(rotation=45) # 旋转x轴标签以避免重叠
|
|||
|
|
|||
|
# 保存图表
|
|||
|
output_image = f'result/{indicator}_performance.png'
|
|||
|
plt.savefig(output_image, dpi=300, bbox_inches='tight') # 添加bbox_inches参数确保所有标签都显示
|
|||
|
print(f"{indicator_name}表现图表已保存至{output_image}")
|
|||
|
|
|||
|
return True
|
|||
|
|
|||
|
|
|||
|
if __name__ == "__main__":
|
|||
|
# 指定日期范围
|
|||
|
start_date = '20230912'
|
|||
|
end_date = None
|
|||
|
|
|||
|
# 获取板块资金流向数据
|
|||
|
get_sector_moneyflow_data(start_date, end_date)
|
|||
|
|
|||
|
analyze_money_flow()
|