这个提交实现了一个完整的LLM管理器,并增加了相关配置项。主要变更包括: - 在配置文件中添加LLM相关参数设置(API密钥、基础URL等) - 创建新的LLM管理器类,实现单例模式和与LLM的通信功能 - 优化数据库查询日志记录
173 lines
6.0 KiB
Python
173 lines
6.0 KiB
Python
import os
|
||
import traceback
|
||
|
||
import pandas as pd
|
||
from sqlalchemy import create_engine, text, inspect
|
||
from logger_manager import get_logger
|
||
|
||
# 获取日志器
|
||
logger = get_logger()
|
||
|
||
from config_manager import get_config_manager
|
||
from logger_manager import get_logger
|
||
|
||
|
||
class DatabaseManager:
|
||
"""
|
||
数据库管理类,负责数据的存储、查询和管理
|
||
"""
|
||
|
||
def __init__(self):
|
||
self.config = get_config_manager()
|
||
self._engine = None
|
||
self.logger = get_logger()
|
||
|
||
def get_engine(self):
|
||
"""获取SQLite数据库引擎,如果不存在则创建"""
|
||
if self._engine is not None:
|
||
return self._engine
|
||
|
||
db_path = self.config.get('sqlite.path')
|
||
|
||
# 确保数据库目录存在
|
||
os.makedirs(os.path.dirname(db_path), exist_ok=True)
|
||
|
||
# 创建SQLite数据库引擎
|
||
self._engine = create_engine(f'sqlite:///{db_path}', echo=False)
|
||
return self._engine
|
||
|
||
def table_exists(self, table_name):
|
||
"""
|
||
检查表是否存在
|
||
参数:
|
||
table_name (str): 数据表名称
|
||
返回:
|
||
bool: 表是否存在
|
||
"""
|
||
engine = self.get_engine()
|
||
inspector = inspect(engine)
|
||
return inspector.has_table(table_name)
|
||
|
||
def load_df_from_db(self, table_name, conditions=None):
|
||
"""
|
||
从数据库中加载数据
|
||
参数:
|
||
table_name (str): 数据表名称
|
||
conditions (str): 过滤条件,如 "trade_date > '20230101'"
|
||
返回:
|
||
pandas.DataFrame: 查询结果
|
||
"""
|
||
engine = self.get_engine()
|
||
query = f"SELECT * FROM {table_name}"
|
||
if conditions:
|
||
query += f" WHERE {conditions}"
|
||
try:
|
||
logger.debug(f"执行查询: {query}")
|
||
return pd.read_sql(query, engine)
|
||
except Exception as e:
|
||
self.logger.error(f"从数据库加载数据时出错: {e}")
|
||
self.logger.debug(f"完整的错误追踪信息:\n{traceback.format_exc()}")
|
||
return pd.DataFrame()
|
||
|
||
def save_df_to_db(self, df, table_name, if_exists='append', force_update=False):
|
||
"""
|
||
保存DataFrame到数据库
|
||
|
||
参数:
|
||
df (pandas.DataFrame): 要保存的数据
|
||
table_name (str): 数据表名称
|
||
if_exists (str): 如果表存在时的操作: 'fail', 'replace', 或 'append'
|
||
force_update (bool): 是否强制更新(会先删除相同日期的数据再插入)
|
||
|
||
返回:
|
||
bool: 操作是否成功
|
||
"""
|
||
if df.empty:
|
||
self.logger.warning("警告: 尝试保存空的DataFrame到数据库")
|
||
return False
|
||
|
||
engine = self.get_engine()
|
||
try:
|
||
if force_update and 'trade_date' in df.columns:
|
||
# 强制更新模式:先删除当前批次涉及的日期数据,然后插入新数据
|
||
current_dates = df['trade_date'].unique().tolist()
|
||
# 删除这些日期的现有数据
|
||
self.delete_existing_data_by_dates(table_name, current_dates)
|
||
# 插入新数据(强制更新时始终使用append,因为已经删除了相关数据)
|
||
df.to_sql(table_name, engine, if_exists='append', index=False)
|
||
else:
|
||
# 普通模式
|
||
df.to_sql(table_name, engine, if_exists=if_exists, index=False)
|
||
|
||
return True
|
||
except Exception as e:
|
||
self.logger.error(f"保存数据到数据库时出错: {e}")
|
||
self.logger.debug(f"完整的错误追踪信息:\n{traceback.format_exc()}")
|
||
return False
|
||
|
||
def delete_existing_data_by_dates(self, table_name, trade_dates):
|
||
"""
|
||
从数据库表中删除指定交易日期的数据
|
||
|
||
参数:
|
||
table_name (str): 数据表名称
|
||
trade_dates (list): 需要删除的交易日期列表
|
||
|
||
返回:
|
||
bool: 操作是否成功
|
||
"""
|
||
if not trade_dates:
|
||
return True # 如果没有日期需要删除,认为操作成功
|
||
|
||
engine = self.get_engine()
|
||
|
||
try:
|
||
# 将日期列表转换为SQL安全的格式
|
||
date_strings = [f"'{date}'" for date in trade_dates]
|
||
dates_clause = ", ".join(date_strings)
|
||
delete_query = f"DELETE FROM {table_name} WHERE trade_date IN ({dates_clause})"
|
||
|
||
with engine.connect() as connection:
|
||
connection.execute(text(delete_query))
|
||
connection.commit()
|
||
|
||
self.logger.info(f"成功从表 '{table_name}' 中删除 {len(trade_dates)} 个日期的数据")
|
||
return True
|
||
except Exception as e:
|
||
self.logger.error(f"删除表 '{table_name}' 中的数据时出错: {e}")
|
||
self.logger.debug(f"完整的错误追踪信息:\n{traceback.format_exc()}")
|
||
return False
|
||
|
||
def query(self, sql_query, params=None):
|
||
"""
|
||
执行自定义SQL查询
|
||
|
||
参数:
|
||
sql_query (str): 要执行的SQL查询语句
|
||
params (dict, 可选): SQL参数化查询的参数
|
||
|
||
返回:
|
||
pandas.DataFrame 或 bool: 对于SELECT查询返回DataFrame,其他查询返回是否执行成功
|
||
"""
|
||
engine = self.get_engine()
|
||
try:
|
||
# 判断是否是SELECT查询
|
||
is_select = sql_query.strip().upper().startswith("SELECT")
|
||
|
||
if is_select:
|
||
# 对于SELECT查询,返回DataFrame
|
||
return pd.read_sql(sql_query, engine, params=params)
|
||
else:
|
||
# 对于非SELECT查询,执行并返回成功状态
|
||
with engine.connect() as connection:
|
||
connection.execute(text(sql_query), params)
|
||
connection.commit()
|
||
self.logger.info(f"成功执行SQL查询")
|
||
return True
|
||
except Exception as e:
|
||
self.logger.error(f"执行SQL查询时出错: {e}")
|
||
self.logger.debug(f"完整的错误追踪信息:\n{traceback.format_exc()}")
|
||
if is_select:
|
||
return pd.DataFrame()
|
||
return False
|