pysyft/client.py

118 lines
3.5 KiB
Python
Raw Normal View History

import syft as sy
import torch
import torch.nn as nn
import torch.optim as optim
class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(torch.relu(self.conv1(x)))
x = self.pool(torch.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
def train_cnn_model(images, labels):
# 创建模型
model = SimpleCNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
# 训练模型
print("Starting training...")
for epoch in range(2): # 只训练2个epoch作为示例
running_loss = 0.0
for i in range(len(images)):
# 获取数据
inputs = images[i].unsqueeze(0)
target = labels[i].unsqueeze(0)
# 前向传播
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, target)
# 反向传播
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 10 == 9: # 每10个batch打印一次
print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 10:.3f}')
running_loss = 0.0
return model
def main():
# 直接连接到已运行的服务器
client = sy.login(
url="localhost:8093",
email="researcher@cifar10.research",
password="syftrocks"
)
try:
# 获取数据集
dataset = client.datasets["CIFAR10 Training Dataset"]
print(f"Retrieved dataset: {dataset.name}")
# 获取资产
images, labels = dataset.assets
print(f"Retrieved assets: {images.name}, {labels.name}")
# 使用模拟数据
train_images = images.mock
train_labels = labels.mock
# 创建项目
project_description = """
The purpose of this study is to train a CNN model on CIFAR10 data.
The model architecture includes two convolutional layers and three fully connected layers.
We will evaluate the model's performance on the training data.
"""
research_project = client.create_project(
name="CIFAR10 CNN Project",
description=project_description,
user_email_address="researcher@cifar10.research"
)
# 创建远程函数
remote_train_function = sy.syft_function_single_use(
images=train_images,
labels=train_labels
)(train_cnn_model)
# 创建代码请求
code_request = research_project.create_code_request(
remote_train_function,
client
)
# 等待数据所有者批准请求
print("Waiting for data owner to approve the request...")
input("Press Enter after the data owner has approved the request...")
# 执行训练
model = client.code.train_cnn_model(
images=train_images,
labels=train_labels
)
print('Training completed successfully!')
except Exception as e:
print(f"Error occurred: {str(e)}")
if __name__ == '__main__':
main()